Bayesian Model Averaging and Bayesian Predictive Information Criterion for Model Selection
نویسندگان
چکیده
The problem of evaluating the goodness of the predictive distributions developed by the Bayesian model averaging approach is investigated. Considering the maximization of the posterior mean of the expected log-likelihood of the predictive distributions (Ando (2007a)), we develop the Bayesian predictive information criterion (BPIC). According to the numerical examples, we show that the posterior mean of the log-likelihood has a positive bias comparing with the posterior mean of the expected log-likelihood, and that the bias estimate of BPIC is close to the true bias. One of the advantages of BPIC is that we can optimize the size of Occam’s razor. Monte Carlo simulation results show that the proposed method performs well.
منابع مشابه
On properties of predictors derived with a two-step bootstrap model averaging approach - A simulation study in the linear regression model
In many applications of model selection there is a large number of explanatory variables and thus a large set of candidate models. Selecting one single model for further inference ignores model selection uncertainty. Often several models fit the data equally well. However, these models may differ in terms of the variables included and might lead to different predictions. To account for model se...
متن کاملPredicting waste generation using Bayesian model averaging
A prognosis model has been developed for solid waste generation from households in Hoi An City, a famous tourist city in Viet Nam. Waste sampling, followed by a questionnaire survey, was carried out to gather data. The Bayesian model average method was used to identify factors significantly associated with waste generation. Multivariate linear regression analysis was then applied to evaluate th...
متن کاملAn Efficient Bayesian Optimal Design for Logistic Model
Consider a Bayesian optimal design with many support points which poses the problem of collecting data with a few number of observations at each design point. Under such a scenario the asymptotic property of using Fisher information matrix for approximating the covariance matrix of posterior ML estimators might be doubtful. We suggest to use Bhattcharyya matrix in deriving the information matri...
متن کاملBayesian change point estimation in Poisson-based control charts
Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...
متن کاملEstimation of genetic parameters of litter size in Moghani sheep using threshold model via Bayesian approach
This study was conducted to estimate the genetic parameters of litter size (LS) in Moghani sheep using threshold model via Bayesian approach. The data originated from the Jafar-Abad Station of Ardabil province, Iran, and included 9698 lactation records of 4977 ewes with lambings from 1995 until 2010. The pedigree file consisted of data on animals born from 1987 to 2010. The significance of fixe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008